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ABSTRACT: This paper proposes an uncertainty analysis framework based on the characterization of the un-
certain parameter space. This characterization enables the identification of worst-case uncertainty combinations
and the approximation of the failure and safe domains with a high level of accuracy. Because these approxi-
mations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily
tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-
rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets.
These methods are applicable to requirement functions whose functional dependency on the uncertainty is a
known polynomial. Some of the most prominent features of the methodology are the substantial desensitization
of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncer-
tainty) as well as the accommodation for changes in such a model with a practically insignificant amount of
computational effort.

1 INTRODUCTION

This paper studies the reliability of a system for which
a parametric mathematical model is available. The
acceptability of the system depends upon its ability
to satisfy several design requirements. These require-
ments, which are represented by a set of inequality
constraints on selected output metrics, depend on the
uncertain parameter vector p. The system is deemed
acceptable if all inequalities are satisfied. The require-
ments/constraints partition the uncertain parameter
space into two sets, the failure domain, where at least
one of them is violated, and the safe domain, where all
of them are satisfied. The reliability analysis of this
system consists of assessing its ability to satisfy the
requirements when the uncertain parameter p is free
to take on any value from a prescribed set. The most
common practice in reliability analysis is to assume a
probabilistic uncertainty model of p (i.e., the random
variable that models the uncertainty), and estimate the
corresponding probability of failure. Calculating the
failure probability is usually difficult since it requires
evaluating a multi-dimensional integral over a com-
plex integration domain. Sampling-based approaches

(Niederreiter 1992, Kall and Wallace 1994) and meth-
ods based on asymptotic approximations of the failure
domain (Rackwitz 2001) are the engines of most (if
not all) of the numerical tools used to estimate this
probability.

This paper proposes techniques that characterize
the uncertain parameter space with a high level of fi-
delity. A significant thrust of this research is the gen-
eration of sequences of inner approximations to the
safe and failure domains by subsets of readily com-
putable probability. These sequences are chosen such
that they almost surely fill up the region of interest.
The strategies proposed, which are only applicable
to requirement functions having an explicitly known
polynomial dependency on the uncertainty, yield re-
sults whose correctness is formally verifiable. The
companion paper (Crespo et al. 2011) proposes strate-
gies with the same goal but applicable to unrestricted
requirement functions. Overall, the methodology en-
ables the substantial desensitization of the calcula-
tions from the assumed uncertainty model as well as
the accommodation for changes in such a model with
a practically insignificant amount of computational
effort.



This paper is organized as follows. Basic concepts
are established in Section 2. Section 3 presents strate-
gies for generating and refining approximations to
the failure and safe domains. These approximations,
along with the developments in (Crespo, Kenny, and
Giesy 2011), enable the calculation of upper and
lower bounds to the failure probability. Finally, a few
concluding remarks close the paper. Proofs are omit-
ted due to space limitations.

2 BASIC CONCEPTS AND NOTIONS

Uncertainty models of p ∈ Rs can be probabilistic
or non-probabilistic. A set whose members are all
possible uncertain parameter realizations is a non-
probabilistic model. This set, called the support set,
will be denoted as ∆ ⊆ Rs. In a probabilistic uncer-
tainty model, p is a random vector. This model is fully
prescribed by the joint probability density function
fp(p) : ∆ → R or the cumulative distribution func-
tion Fp(p) : ∆→ [0,1].

Consider a system that depends on the uncertain
parameter p. The design requirements imposed upon
such a system are given by the vector1 inequality
g(p) < 0, where g : D → Rv, and ∆ ⊆ D ⊆ Rs. The
set D, where the constraint functions are defined, will
be called the master domain.

The failure domain, denoted as F ⊂ Rs, is com-
prised of the parameter realizations that fail to satisfy
at least one of the requirements. Specifically, the fail-
ure domain is given by

F =
v⋃
i=1

{p : gi(p) ≥ 0} . (1)

The safe domain, given by S = C(F), where C(·) de-
notes the complement set operator given by C(X ) =
D \ X , consists of the parameter realizations satisfy-
ing all the design requirements. The failure probabil-
ity associated with a probabilistic uncertainty model
is given by

P [F ] =

∫
F
fp(p)dp, (2)

where P [·] is the probability operator. Techniques
for approximating F and S will be presented below.
The resulting approximations are comprised of hyper-
rectangles or quasi-ellipsoids.

The hyper-rectangle havingm > 0 as the vector of
half-lengths of the sides and p̄ as its geometric center,

1Throughout this paper, it is assumed that vector inequalities
hold component-wise, super-indices denote a particular vector
or set, and sub-indices refer to vector components; e.g., pj

i is the
ith component of the vector pj .

is given by

R(p̄,m) = {p : p̄−m < p < p̄+m} . (3)

An alternative representation of this hyper-rectangle
is given by

R(p̄,m) = δ(p̄−m, p̄+m), (4)

where

δ(x,y) = [x1,y1]× [x2,y2]× · · · × [xs,ys], (5)

is the Cartesian product of intervals.
A subdivision is the process of dividing a set into

subsets. Let ρ(·) be an operator whose input is any
given set and its output are the subsets. A bisection-
based subdivision in the ith direction is given by

ρ(R) = {R(p̄+w,m−w),R(p̄−w,m−w)},

where w = [0, . . . ,0,mi/2,0, . . . ,0]. Alternatively,

ρ(R) = {δ(v1,v1 +m), . . . , δ(v2s

,v2s

+m)},

where vk is a vertex of δ(l, l+m), leads to 2s rect-
angular subsets each of volume

∏s
i=1mi.

The quasi-ellipsoid having m > 0 as the semi-
principal axes vector and p̄ as its geometric center,
is given by

E(p̄,m, n) =

p :

(
s∑
i=1

(
pi − p̄i
mi

)n) 1
n

< 1

 (6)

where n is an even natural number. Note that E is
a closed set in Rs having a polynomial boundary of
degree n. Further notice that E(p̄,m, n) approaches
R(p̄,m) asymptotically from the inside as n→∞.

When applicable, p̄ will be called the nominal pa-
rameter point. The variable σ will be used to deter-
mine the containment of p̄ in S . Specifically, σ = 1 if
g(p̄) < 0, otherwise σ = −1.

The sections that follow provide the means to gen-
erate and sequentially refine approximations of the
failure and safe domains.

3 REQUIREMENTS WITH KNOWN
POLYNOMIAL DEPENDENCIES

The key development in this section is the calcula-
tion of inner and outer approximations to the fail-
ure domain. These approximations are comprised of
a collection of almost disjoint hyper-rectangles or
quasi-ellipsoids. The almost disjoint condition is re-
quired for estimating failure probability bounds (Cre-
spo, Kenny, and Giesy 2011).



Let F sub and Ssub denote inner approximations
(sub-sets) of the failure and safe domains. Thus,
F sup ∆

= C(Ssub) is an outer approximation (super-
set) of the failure domain. Note that ∅ ⊆ F sub ⊆ F ⊆
F sup ⊆ D. Further notice that C(F sub ∪ F sub) con-
tains the failure domain boundary ∂F .

The strategies presented below can only be applied
when the dependency of g on p assumes a known
polynomial form. This dependency may occur natu-
rally or may be the result of approximations. When
the evaluation of g is computationally expensive, it is
a common practice to use some realizations of the un-
certain parameter and of the corresponding value of
the constraint functions to build a surrogate model of
g(p). If this model is chosen to be polynomial, the
approaches introduced hereinafter can be deployed.
Note however that the approximation error present in
the surrogate model not only undermines the rigorous
character of the methodology but may also yield re-
sults that are invalidated by the actual g.

Bernstein expansion-based techniques (Zettler and
Garloff 1998) and interval analysis-based techniques
(Jaulin et al. 2001) are well suited for hyper-
rectangular geometries. Both of these approaches can
be used to approximate sets with hyper-rectangles.
The approximations resulting from the latter tech-
nique however, are considerably more slack than
those of the alternative technique for the same number
of subsets. Sum of Squares (SOS) programing-based
techniques (Packard et al. 2010) on the other hand,
are better suited for sets with polynomial boundaries,
e.g., ellipsoids.

Formulations that enable evaluating set contain-
ment, determining maximal deformations, and ap-
proximating the failure and safe domains are consid-
ered subsequently. By set containment we imply de-
termining if all the members of a set are contained
by another set. A maximal deformation (Crespo et al.
2008, Crespo et al. 2009) is the outcome of a pro-
cess that enables quantifying the separation between
a point and ∂F as well as the identification of worst-
case uncertainty combinations. By failure or safe do-
main approximations we imply the generation of se-
quences of inner and outer approximations to such
sets. The sequence {F sub1 ,F sub2 , . . .} contains inner
approximations of the failure domain. The sequence
{F sup1 ,F sup2 , . . .} contains outer approximations of
the failure domain. Similarly, {Ssub1 ,Ssub2 , . . .} and
{C(F sub1 ),C(F sub2 ), . . .} are sequences of inner and
outer approximations to the safe domain. All these
sequences approach the domain being approximated
when their number of terms increases.

4 BERNSTEIN EXPANSION

The Bernstein expansion approach (Zettler and
Garloff 1998) enables determining if a polynomial
inequality holds or not over a hyper-rectangular do-
main. This approach requires mapping this domain to
the unit hyper cube. Denote by u = U(p) an affine
transformation that maps the hyper-rectangle D onto
the unit cube U =R(1

2
, 1
2
). Then h(u) = g(U−1(u))

is a polynomial on U .
For simplicity in the presentation we first consider

the case where there is a single constraint function
assuming a univariate polynomial form. If the poly-
nomial h is given by

h(u) =
n∑
i=0

aiu
i, (7)

its Bernstein expansion is

h(u) =
n∑
i=0

bi(D,g)Bn
i (u), (8)

where

Bn
i (u) =

(
n

i

)
ui(1−u)n−i, (9)

is the ith Bernstein polynomial of degree n (i.e., an
element of the basis) and

bi(D,g) =
i∑

j=0

(
i
j

)(
n
j

)aj, (10)

is the ith Bernstein coefficient. Some fundamental
properties of this basis are

∑
Bn
i (u) = 1 (normal-

ization), 0 ≤ Bn
i (u) ≤ 1 for 0 ≤ u ≤ 1 (bounded-

ness), and Bn
i (u) = Bn

n−i(1 − u) > 0 (symmetry).
Simple manipulations lead to the free function eval-
uation property:

h(0) = b0(D,g), (11)

h(1) = bn(D,g). (12)

The range enclosing property follows directly from
the normalization and boundedness properties and is
given by

min
i≤n
{bi(D,g)} ≤ g(p) ≤ max

i≤n
{bi(D,g)} , (13)

for all p ∈ D. Note that the Bernstein expansion en-
ables bounding the range of the polynomial by mere
algebraic manipulations. In contrast to the nonlinear
optimization approach (Crespo et al. 2011) and SOS



approaches, there is no need to solve an optimization
problem or even evaluate the polynomial.

The single constraint, multivariate polynomial case
is considered next. Define the multi-index i as a vec-
tor of non-negative integers i = [i1, . . . , is]. Note that
monomials can be represented as ui = ui11 u

i2
2 · · ·uiss .

An s-variate polynomial can be represented as

h(u) =
∑
i≤n

aiu
i, (14)

where u ∈ U . Recall that vector inequalities should
be interpreted component-wise. The Bernstein expan-
sion of (14) is given by

h(u) =
∑
i≤n

bi(D,g)Bn
i (u), (15)

where

Bn
i (u) = Bn1

i1
(u1) · · ·Bns

is
(us). (16)

is the ith Bernstein polynomial of degree n and

bi(D,g) =
∑
j≤i

n∏
k=1

(ik

jk

)
(lk
jk

)aj , (17)

for i≤n, is the ith Bernstein coefficient. The normal-
ization, boundedness and symmetry properties extend
to the multi-variate case. The free function evaluation
property becomes

h ([i1/n1, . . . , is/ns]) = bi(D,g), (18)

where i is an element of {0,n1}× · · · × {0,ns}. The
range enclosing property becomes

min
i≤n
{bi(D,g)} ≤ g(p) ≤ max

i≤n
{bi(D,g)} , (19)

for all p ∈ D. Tighter bounds on the range of g(p)
are obtained by subdividing D into subsets, calculat-
ing the Bernstein expansion for each of them, and se-
lecting the largest and the smallest of all Bernstein
coefficients. In particular, if ρ(D) = {R1, . . . ,Rt} is
a subdivision of the master domain, then for all p∈D,

min
j≤t

{
min
i≤n
{bi(Rj,g)}

}
≤ g ≤ max

j≤t

{
max
i≤n
{bi(Rj,g)}

}
(20)

These bounds converge to the global minimum and
global maximum of g(p) when the volume of the sub-
sets in ρ approaches zero. The reason the bounds in
(20) can be calculated efficiently is that the Bernstein
coefficients on the elements of ρ(D) resulting from
applying the bisection-based subdivision of Section 2
can be calculated directly from those on D (Zettler
and Garloff 1998). The sequential application of the
bisection-based subdivision scheme leads to bounds
that converge to the global minimum and maximum.

4.1 Set Containment of Hyper-Rectangles

The following theorem uses the developments of the
previous section to determine whether a set R(p̄,m)
is fully contained in the safe domain S or failure do-
main F .

Theorem 1. Given a subdivision ρ(D) =
{R1, . . . ,Rt}, the set containment condition
R(p̄,m) ⊆ S holds if

max
k≤v

{
max
j≤t

{
max
i≤n
{bi(Rj,gk)}

}}
< 0. (21)

Furthermore,R(p̄,m) 6⊆ S if there exists k ≤ v, j ≤
t, and a multi-index i ∈ {0,n1} × · · · × {0,ns} such
that

bi(Rj,gk) ≥ 0. (22)

While Formula (21) results from choosing the
largest upper bound in (20) over all the constraint
functions, Formula (22) results from applying the free
function evaluation property.

Theorem 2. Given a subdivision ρ(D) =
{R1, . . . ,Rt}, the set containment condition
R(p̄,m) ⊆ F holds if

max
k≤v

{
min
j≤t

{
min
i≤n
{bi(Rj,gk)}

}}
≥ 0. (23)

Furthermore, R(p̄,m) 6⊆ F if there exists j ≤ t, and
a multi-index i ∈ {0,n1}× · · ·×{0,ns} such that for
all k ≤ v,

bi(Rj,gk) < 0. (24)

While Formula (23) results from choosing the
largest lower bound in (20) over all the constraint
functions, Formula (24) results from applying the free
function evaluation property to any of them.

The asymmetry between Formulas (21) and (23) re-
sults from the definitions of the safe and failure do-
mains. In order to apply these set containment condi-
tions one is required to implement an algorithm for
sequentially subdividing the master domain. When
checking whether R(p̄,m) ⊆ S holds, the subdivi-
sion algorithm should be stopped when either (21) or
(22) is satisfied. When checking whether R(p̄,m) ⊆
F holds, the subdivision algorithm should be stopped
when (23) or (24) is satisfied. The strategies in (Smith
2009) used to compute Bernstein coefficients were
adopted. The computational complexity of the re-
sulting subdivision algorithm is nearly linear with
the number of monomials. This makes the Bernstein
polynomial approach very efficient.



4.2 Maximal Deformation of Hyper-Rectangles

In this section we use the Bernstein expansion ap-
proach to evaluate the set containment conditions re-
quired to perform homothetic deformations. In partic-
ular, one can solve for

α̃ = sup{α :R(p̄, αm) ⊆ S}, (25)

by evaluating the set containment condition with For-
mula (21) after replacing R(p̄,m) with R(p̄, αm).
An identical process can be applied to compute

α̃ = sup{α :R(p̄, αm) ⊆ F}, (26)

using Formula (23).
Alternatively, one may search for the maximal de-

formation using nonlinear optimization (Crespo et al.
2011) and then use the developments in Section 4.1 to
verify convergence to the global optimum, e.g., show
thatR(p̄, α̃m) ⊆ S.

4.3 Failure Domain Approximations

The algorithm below iteratively generates indexed
sets Λi,Ssubi , andF subi of hyper-rectangles where Ssubi

is an inner approximation to the safe domain, F subi is
an inner approximation to the failure domain, and Λi

is a region whose containment in F or S is to be de-
termined. The application of the set containment con-
ditions (21) and (23) enable the expansion of the inner
approximations. The algorithm proceeds by selecting
a hyper-rectangleR∈ Λi. IfR⊆S, the inner approx-
imation to the safe domain is expanded with this ele-
ment. IfR⊆F , the inner approximation to the failure
domain is expanded with this element. If none of these
conditions are satisfied, the elements of a subdivision
of this rectangle are appended to Λi. The algorithm
terminates when the bounds to the failure probability
exceeds a prescribed limit. The algorithmic represen-
tation of this procedure is as follows.

Let g(p)< 0 denote the set of system requirements
and fp(p), p ∈ ∆ ⊆ D be the uncertainty model. De-
note by Pmax a parameter prescribed by the user de-
noting the largest admissible failure probability asso-
ciated with the system. Set i= 1, Λ1 = {D},F sub1 = ∅,
and Ssub1 = ∅.

1. LetR be a largest element of Λi.

2. Perform a Bernstein expansion of all constraint
functions inR.

3. If Equation (21) holds let Λi+1 = Λi \R, Ssubi+1 =
Ssubi ∪ R, and F subi+1 = F subi . If Equation (23)
holds let Λi+1 = Λi \ R, F subi+1 = F subi ∪ R,
Ssubi+1 = Ssubi . If neither equation holds, set Λi+1 =
(Λi \R)∪ ρ(R), Ssubi+1 = Ssubi , and F subi+1 = F subi .

Figure 1: Fsub
i (red), Ssub

i (green) and ∂F (thick line).

4. Let F supi+1 = C(Ssubi+1). Evaluate P [F subi+1] and
P [F supi+1 ] (Crespo et al. 2011).

5. If P [F subi+1] ≥ 1 − Pmax declare the system ac-
ceptable and stop. If P [F supi+1 ] ≤ Pmax declare
the system unacceptable and stop. Otherwise, in-
crease i by one, and go to Step (1).

As the number of iterations increases, Ssubi and
F subi approach the safe and failure domain. P [F subi ]
and P [Ssubi ] are monotonically increasing functions
of i. On the other hand, P [Λi] and P [F sup] are
monotonically decreasing functions of i. Note that
the elements in Λi are an approximation of ∂F . The
larger the value of i the better the approximation.

Example 1: We consider the flutter stability analysis
of a 3-link Ziegler mechanism. The problem state-
ment and resulting constraint function are provided in
(Kirillov 2011). For illustration purposes we consider
a two dimensional problem where the uncertain
parameters are the mass of the upper link m3 and the
follower force P applied to its end. The other param-
eters are m1 = 4.1, m2 = 0.835, c1 = c2 = c3 = 1
and l1 = l2 = l3 = 1. This setting leads to a six order
polynomial constraint. Figure 1 shows F subi (region
of flutter instability) and Ssubi (region of stability)
for D = R([0.2,4.5]>, [0.2,3.5]>) at a fixed value
of i. This domain, which leads to inadmissibly large
probabilities of instability, has been purposely chosen
to illustrate the structure of the approximations. We
have used the bisection-based subdivision where
the subdivided variable alternates. The set of boxes
for which set containment cannot be established are
white. Note that this region is a tight approximation
of ∂F . Tight bounds to the failure probability can be
readily calculated from these approximations.



5 SOS PROGRAMMING

Even though the theory supporting the developments
that follow applies to all sets having polynomial
boundaries, we focus on quasi-ellipsoids since they
enable the analytical calculation of their probability
(Crespo et al. 2011).

5.1 SOS Determination

For simplicity in the presentation we first consider the
single constraint case. If g(p) is a polynomial of de-
gree less than or equal to 2d in the variable p ∈ Rs, its
vectorial representation is

g(p) = c>x(p), (27)

where x : Rs → Rdim(x) is a vector of monomials in
p of degree less than or equal to 2d, and c is a vector
of coefficients. On the other hand, the Gram matrix
representation of this polynomial is

g(p) = z>(p)Qz(p), (28)

where z : Rs → Rdim(z) is a vector of monomials
in p of degree less than or equal to d and Q ∈
Rdim(z)×dim(z) is a symmetric matrix. The Gram rep-
resentation of g is not unique. A procedure to param-
eterize all possible representations is as follows. De-
fine the linear operator L that maps each symmetric
matrix Q to the polynomial coefficients c, i.e.,

L(Q) = c. (29)

A matrix representation of L can be computed since
both its domain and its range are finite dimensional.
This transformation enables us to parameterize the
family of symmetric matrices yielding Gram repre-
sentations via

Q = Q0 +

p∑
i=1

λiNi, (30)

where Q0 is the symmetric matrix corresponding to a
particular Gram representation (i.e., L(Q0) = c), the
set {N1, . . .Np} is a basis of the null space of L (i.e.,
L(Ni) = 0 for i = 1, . . . , p) and λ ∈ Rp is a vector of
multipliers. Note that for any value of λ in (30), (28)
is a valid Gram representation of g.

The Gram representation of a polynomial enables
us to determine if a polynomial is a SOS. The poly-
nomial g(p) is a SOS if there exist polynomials
h1, . . . , hn such that g =

∑n
i=1 h

2
i . The polynomial

g(p) is a SOS if and only if there exists a posi-
tive semi-definite matrix Q, to be denoted as Q �
0, that satisfies (28) (Powers and Wormann 1998,

Parrillo 2000). The functions h1, . . . , hn, that consti-
tute the SOS representation of g, result from mak-
ing Choleski or Schur decompositions of Q. Conse-
quently, g is a SOS if an only if there exist a λ for
which Q0 +

∑p
i=1λiNi � 0. This is a Linear Matrix

Inequality (LMI) feasibility problem.
Numerical techniques for solving semi-definite

programs can be used to find a solution to this LMI
feasibility problem. Publicly available software, such
as SOSTOOLS, YALMIP and SeDuMi, automate the
process of posing and solving this convex optimiza-
tion problem. Unfortunately, its computational re-
quirements (e.g., the number of monomials that re-
quire representation and the dimension of the null
space) grow rapidly with the degree of the polyno-
mials and the dimension of the parameter space s.

5.2 Set Containment of Quasi-Ellipsoids

We want to determine if the set E(p̄,m, n) is fully
contained in the safe or failure domains by using the
developments of the previous section. These set con-
tainment conditions, which are equivalent to

E(p̄,m, n) ⊆ S, (31)

E(p̄,m, n) ⊆ F , (32)

can be evaluated using the following Theorem.

Theorem 3. Let E = {p : e(p) ≤ 0}, where e(p)
is polynomial, be an alternate representation of the
quasi-ellipsoid in (6), I = {1, . . . , v} andX = {i ∈ I :
gi(p̄) > 0}. If there exist a function q(p) : Rs → Rv

such that q(p) ≥ 0 and qi(p)e(p) − gi(p) ≥ 0 for
all i ∈ I and all p ∈ ∆ then E(p̄,m, n) ⊆ S. On the
other hand, if there exists a function q(p) : Rs → R
such that q(p)≥ 0 and q(p)e(p) +gi(p)≥ 0 for some
i ∈ X and all p ∈ ∆ then E(p̄,m, n) ⊆ F .

Note that there are 2 positive semi-definite (PSD)
constraints per constraint function. PSD constraints,
even polynomial ones, are numerically difficult to
solve. However, by restricting the constraint func-
tions g to take on a multivariable polynomial form;
and relaxing the constraints to be SOS polynomials,
in which case Theorem 3 still holds, we obtain a
problem that can be solved efficiently. While all SOS
polynomials are PSD, not all the PSD polynomials
are SOS. Therefore, the relaxation to SOS polynomi-
als yields a sufficient condition for the global non-
negativity constraints in Theorem 3.

In practice, the SOS polynomial multipliers q(p)
and q(p) must be restricted to be in a fixed finite
dimensional subspace of polynomials (e.g., quartic
polynomials). This is achieved by prescribing a poly-
nomial basis for them, and using semi-definite pro-
graming to search for the coefficients of the cor-
responding linear combination. Note however that



the prescription of an overly restrictive basis may
wrongly invalidate the set containment condition
(e.g., a quadratic basis for q is prescribed but a quar-
tic q is needed to demonstrate containment). Fur-
ther notice that the SOS approach cannot be used to
demonstrate that there is no set containment. Numer-
ical experiments indicate that problems on the order
of s+ n+

∑
deg(gi) < 11 are solvable.

5.3 Maximal Deformation of Quasi-Ellipsoids

In this section we use the SOS programing approach
to evaluate the set containment conditions required by
the homothetic deformations. In particular, we want to
solve for

α̃ = sup{α : E(p̄, αm, n) ⊆ S}, (33)

α̃ = sup{α : E(p̄, αm, n) ⊆ F}. (34)

Theorem 3 enables the reformulation of (33) as

α̃ =

(
max
β, q(p)

β

) 1
n

subject to (35)

q(p) ∈ θ[p], (36)

−gi(p) + qi(p) (e(p)− β + 1) ∈ θ[p], ∀i ∈ I, (37)

a− p̄ ≤ 1/n
√
βm ≤ b− p̄, (38)

where ∆ = δ(a,b), and θ[p] denotes the set of SOS
polynomials in the variable p. Constraint (38) ensures
that the maximal set is fully contained in the support
set so its probability can be calculated analytically.

The application of Theorem 3 to (34) yields

µ̃ = max
i∈X

µi, where (39)

µi =

(
max
β, q(p)

β

) 1
n

subject to (40)

q(p) ∈ θ[p], (41)

gi(p) + q(p) [e(p)− β + 1] ∈ θ[p], (42)

and constraint (38). In general µ̃ ≤ α̃. This is so be-
cause E(p̄, µ̃m, n) will be limited by one of the man-
ifolds gi(p) = 0 with i ∈X , but such a manifold may
not be part of ∂F . Therefore, while the formulation
for containment by the safe domain always converges
to the critical similitude ratio, the one for containment
by the failure domain may only underestimate it.

The above problems, which have an objective func-
tion that is linear in the decision variables (i.e., β)
as well as multiple SOS constraints, are called SOS
programs. The terms qiβ in (37) and qβ in (42)
make both SOS programs bi-linear in the decision
variables. The constraints containing these terms are

quasi-convex; e.g., for a fixed value of β all con-
straints are convex in q. Hence these problems can
be solved sequentially by searching for max(β) via
bisection and by searching for q via linear SOS pro-
graming techniques.

With the critical similitude ratio (or its estimate) in
hand, the maximal set (or its estimate) can be read-
ily calculated. The corresponding critical parameter
value p̃ (or its estimate) however, cannot be calculated
directly from the solution to the above problems.

5.4 Failure Domain Approximations

The algorithm proposed here is similar to the one in
Section 4.3 since it iteratively generates the indexed
sets Ssubi (inner approximation to the safe domain),
F subi (inner approximation to the failure domain), and
Λi (region whose containment in F or S is to be de-
termined). At any given iteration we first chose a rect-
angle from Λi. By the means presented in Section 5.2
we determine if the quasi-ellipsoid inscribed in this
hyper-rectangle is contained in the safe or failure do-
mains. If the ellipsoid is contained in the safe domain,
the inner approximation to the safe domain is ex-
panded with this element. If the ellipsoid is contained
in the failure domain, the inner approximation to the
failure domain is expanded with this element. Other-
wise, the rectangle is subdivided into smaller rectan-
gles (see section 2 for two subdivision logics), and
these subsets are annexed to Λi. The iteration of this
procedure, which is stopped when the bounds to the
failure probability exceeds a prescribed limit, leads to
the desired sequence of approximations. The algorith-
mic representation of this procedure is as follows.

Start from the very same initial iteration values of
the Algorithm in Section 4.3.

1. LetR(p̄,m) be a largest element of Λi. Set Ω =
E(p̄,m, n).

2. Solve Equation (35) if σ = 1. Otherwise solve
Equation (40). Let τ denote either α̃ or µ̃.

3. If τ < 1, set Λi+1 = (Λi \ R) ∪ ρ(R), Ssubi+1 =
Ssubi , and F subi+1 = F subi . If τ ≥ 1 and σ = 1 let
Λi+1 = Λi \ R, Ssubi+1 = Ssubi ∪ Ω and F subi+1 =
F subi . If τ ≥ 1 and σ = −1 let Λi+1 = Λi \ R,
F subi+1 = F subi ∪Ω and Ssubi+1 = Ssubi .

4. Let F supi+1 = C(Ssubi+1). Evaluate P [F subi+1] and
P [F supi+1 ] or their lower bounds ψ(F subi+1) and
ψ(F supi+1) depending upon the applicable Theo-
rem (Crespo et al. 2011).

5. If P [F subi+1] ≥ 1 − Pmax declare the system ac-
ceptable and stop. If P [F supi+1 ] ≤ Pmax declare
the system unacceptable and stop. Otherwise, in-
crease i by one, and go to Step (1).



Figure 2: Fsub
i (red), Ssub

i (green), ∂F (thick line) and individ-
ual constraint boundaries (thin lines).

The closing remarks of Section 4.3 apply here as well.

Example 2: Consider the constraint functions

g1 = p2
1p

4
2 + p4

1p
2
2 − 3p2

1p
2
2 − p1p2 +

p6
1 + p6

2

200
− 7

100
,

g2 = −p2
1p

4
2 − p4

1p
2
2 + 3p2

1p
2
2 +

p5
1p

3
2

10
− 0.9,

Figure 2 shows the subsets comprising F sub and Ssub
for a fixed value of i. Note that the approximations,
which result from uniting quartic polynomials (n =
4), have voids among neighboring subsets. Further
notice that subsets of F subi , such as those in the vicin-
ity of p = [−1,−1.25]>, could have been replaced by
a single subset that contains them. Even though this
larger subset is contained in F , the containment con-
dition (41-42) is not satisfied. This is the manifesta-
tion of µ̃ ≤ α̃. Recall that the manifold where a con-
straint function takes the value of zero, and not ∂F ,
prescribes the limit where the technique correctly in-
dicates set containment. Bounds to the failure proba-
bility can be readily calculated from the approxima-
tions. The empty space among the neighboring sub-
sets comprising the approximations makes the bounds
slack. This slackness decreases as n increases.

6 CONCLUSIONS

This paper presents an uncertainty analysis frame-
work applicable to systems subject to polynomial re-

quirements. Approaches based on Bernstein expan-
sions and SOS programing are proposed. These and
all other methods requiring the exploration of the
uncertain parameter space suffer from the curse of
dimensionality, hence their computational demands
grow exponentially with the number of uncertain pa-
rameters. Unfortunately only this space provides the
sense of causality required to understand and prevent
failure. The high dimensionality of this space along
with the inability to guarantee that optimization prob-
lems posed there will converge to the global optimum
are the main liability of the engineering decisions sup-
ported by the outcomes of these methods. This paper
proposes techniques that eliminate this liability when
the dimension of the uncertain space is moderate. The
algorithms proposed allow for data parallelism (i.e.,
perform computations simultaneously on elements of
a subdivision of the master domain). This will help
mitigate the formidable challenges of having a large
number of uncertain parameters.
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